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A B S T R A C T

Background: The incidence of malignant pleural mesothelioma (MPM) has surged due to widespread asbestos 
exposure, particularly since the mid-20th century. Despite significant advancements in cancer treatment, an 
effective cure for MPM remains elusive, largely due to a limited understanding of the molecular mechanisms 
underlying asbestos-related carcinogenesis. This exploratory study aims to uncover gene expression patterns 
uniquely altered in mesothelioma patients with documented asbestos exposure, providing a solid foundation for 
future research focused on identifying novel prognostic and predictive biomarkers.
Methods: Publicly available RNA sequencing data were analyzed through a bioinformatics pipeline to perform 
differential gene expression analysis. Additionally, functional enrichment analysis was applied to highlight 
significantly enriched Gene Ontology (GO) terms related to biological processes, molecular functions, and 
cellular components, offering insights into the molecular pathways involved in MPM development.
Results: The analysis uncovered a set of differentially expressed genes (DEGs) in MPM patients with documented 
asbestos exposure, as well as key GO terms. These enriched biological terms reflect processes such as ion ho-
meostasis and oxidative stress response, providing crucial information on the cellular alterations driven by 
asbestos exposure.
Conclusion: This study's findings deepen our understanding of the molecular landscape underlying asbestos- 
induced carcinogenesis in MPM. The identification of specific DEGs and enriched GO terms lays the founda-
tion for future investigations, including the development of biomarkers, with potential implications for the 
diagnostic and prognostic assessment of MPM.

1. Introduction

Malignant pleural mesothelioma (MPM) is a rare and highly 
aggressive cancer primarily linked to asbestos exposure. Despite ad-
vancements in research, the prognosis for patients with MPM remains 
poor, with a median survival of up to 18 months (Baas et al., 2015). 
Common symptoms include chest pain, difficulty breathing, fatigue, 

coughing, loss of appetite, and sleep disturbances (Moore et al., 2009). 
Asbestos exposure was recognized as the primary cause of MPM over 60 
years ago (Wagner et al., 1960), and the dose-dependent relationship 
between asbestos and MPM is now widely accepted (Noonan, 2017). The 
World Health Organization (WHO) estimates that asbestos-related dis-
eases cause approximately 92,250 deaths worldwide each year, with 
occupational exposure accounting for over 80 % of cases (Baas et al., 
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2015). Although many countries have banned asbestos, its environ-
mental persistence and continued production in some nations maintain 
high global health risks (Brims, 2021).

Asbestos, classified as a Group 1 carcinogen by the International 
Agency for Research on Cancer (IARC), is one of the primary occupa-
tional carcinogens linked to MPM (Ospina et al., 2019). Exposure occurs 
mainly through inhalation of fibers. High-risk occupations include 
construction and shipbuilding, but domestic and environmental expo-
sure also contribute (Vimercati et al., 2019). Asbestos fibers, particularly 
amphibole types, are more persistent and dangerous than chrysotile fi-
bers, with a greater risk associated with fibers longer than 10–20 μm 
(Barlow et al., 2017). Inhalation of fibers causes chronic inflammation, 
driven by interactions between mesothelial cells and macrophages, 
releasing cytokines and reactive oxygen species (ROS), which perpet-
uate cellular damage (Zolondick et al., 2021). Recent studies suggest 
that ferroptosis, an iron-dependent form of cell death, may play a role in 
MPM progression (Ito et al., 2020) (Ito et al., 2021).

Genetic mutations play a crucial role in the pathogenesis of MPM, 
with frequent alterations in tumor suppressor genes such as BAP1, 
CDKN2A, and NF2 (Cheung et al., 2017). Sequencing studies have also 
identified additional mutations in genes like TP53 and SETD2, 
contributing to tumor development (Bueno et al., 2016). Genetic pre-
disposition is significant, with germline mutations in BAP1 increasing 
the risk of mesothelioma in individuals with a history of asbestos 
exposure (Betti et al., 2017). In this context, biomarkers offer a prom-
ising avenue for improving early diagnosis and prognosis in MPM, 
reducing the need for invasive techniques and providing valuable in-
sights into treatment efficacy. Biomarkers such as serum mesothelin, 
HMGB1, and fibulin-3 have shown potential for diagnostic use, although 
no test has yet been clinically validated (Schillebeeckx et al., 2021).

This study aims to identify gene expression profiles specific to me-
sothelioma patients with a history of asbestos exposure. Understanding 
the mechanisms of asbestos-induced carcinogenesis could provide the 
basis for the discovery of novel prognostic and predictive biomarkers, 
with potential implications for improving diagnosis and defining 
personalized approaches to be explored in future studies on MPM.

2. Materials and methods

2.1. Data extraction and cohort selection

RNA-seq data from patients with MPM were retrieved from the 
MESO project of The Cancer Genome Atlas (TCGA), accessed in June 
2023. In this dataset, asbestos exposure history was positive in 62 %, 
negative in 18 %, and unavailable or unknown in the rest (Hmeljak 
et al., 2018). The data were downloaded using the R package TCGA-
biolinks, which facilitated access and retrieval of the required infor-
mation from the TCGA database. Only samples from patients with 
documented asbestos exposure were included. Initial analyses were non- 
significant, likely due to imbalance in sample numbers between exposed 
and unexposed groups, reducing statistical power. To address this, the 
cohort was adjusted to balance the number of exposed and unexposed 
samples, while ensuring similar clinical characteristics in both groups. 
This refinement enhanced statistical robustness and improved the reli-
ability of subsequent analyses.

2.2. Differential gene expression analysis

Differential gene expression (DGE) analysis was conducted using the 
DESeq2 package in R, applying a negative binomial distribution to es-
timate fold changes and dispersion (Love et al., 2014). Genes with a 
mean count below 2 were excluded to improve accuracy (Law et al., 
2016). Differentially expressed genes (DEGs) were identified using a 
log2 fold change (l2FC > 1 or l2FC < − 1) and an FDR-adjusted p-value 
<0.05. MA and volcano plots were generated to visualize DGE results.

2.3. Statistical and principal component analysis

Statistical comparisons between asbestos-exposed and unexposed 
groups were made using Welch t-tests to account for unequal variances. 
ANOVA (Analysis of Variance), followed by Tukey post-hoc tests, was 
used for multi-group comparisons. Principal component analysis (PCA) 
was performed on variance-stabilized and scaled data to explore sample 
clustering. The optimal number of components was determined using 
parallel analysis (Hayton et al., 2004). Uniform Manifold Approxima-
tion and Projection (UMAP) (R package umap v0.2.10.0) was applied to 
variance-stabilized data to further explore sample stratification. A post 
hoc power analysis was conducted using RNASeqPower (v1.48.0), based 
on the sample size (13 vs 12), a significance level (α) of 0.05, dispersion 
estimates from DESeq2, and a coefficient of variation (CV) of 0.5 (Hart 
et al., 2013). Power was evaluated across a range of log2 fold changes to 
assess the ability to detect expression differences given the dataset's 
variability.

2.4. Functional enrichment analysis

Functional enrichment analysis was carried out using input gene lists 
consisting of DEGs that resulted as up- and down-regulated in asbestos 
exposed patients. Gene Ontology (GO) enrichment analysis was per-
formed on DEGs using ClusterProfiler R package, gProfiler, and DAVID 
tools to identify enriched molecular functions, cellular components, and 
biological processes. Significance was evaluated using FDR-adjusted p- 
values (Aleksander et al., 2023). Genes of interest were further identi-
fied through literature searches and their association with asbestos 
exposure using the Comparative Toxicogenomics Database (Davis et al., 
2023).

3. Results

The TGCA-MESO dataset provided asbestos exposure data for 59 
samples (Supplementary Table 1), with 46 samples classified as exposed 
and 13 as unexposed. Initial DGE analysis with the Welch t-test yielded a 
non-significant p-value (0.12399), indicating no significant differences 
between the groups and compromising the study's statistical robustness. 
To improve the analysis, sample sizes were balanced between exposed 
and unexposed groups, ensuring homogeneity in clinical characteristics. 
Given that all samples were tumors and the gene expression differences 
related to asbestos exposure were likely subtle, only MPM samples with 
biphasic or epithelioid histology were included. The final dataset 
selected for analysis consisted of 25 samples, with 13 from asbestos- 
exposed patients and 12 from unexposed patients. The cohort, detailed 
in Supplementary Table 2 and Supplementary Fig. 1, includes annota-
tions for exposure group, age, sex, stage, and diagnosis.

To better understand the sensitivity of the analysis given the selected 
sample size, a post hoc power evaluation was performed. Power analysis 
(Fig. 1) indicated that the 80 % threshold was reached for genes with 
large expression differences (log2FC ≥ 1.8), while the detection of 
moderately deregulated genes was potentially limited by reduced sta-
tistical power. To verify whether measurable transcriptomic differences 
existed between asbestos-exposed and unexposed patients, a Welch t- 
test was conducted, yielding a statistically significant result (t-value =
2.2962; p-value = 0.02167). This finding suggested that global gene 
expression differences between the two groups were unlikely to have 
occurred by chance, supporting the rationale for conducting a differ-
ential gene expression (DGE) analysis. An ANOVA test was also con-
ducted, revealing a significant difference between the two groups (F- 
value = 6.945; p-value <2e-16). Following the ANOVA, a Tukey post- 
hoc test was performed, identifying samples with significant differ-
ences (Supplementary Table 3).

The principal component analysis (PCA) results were visualized in a 
scree plot (Fig. 2a), showing the variance explained by each of the 25 
principal components (PCs). The first principal component (PC1) 
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explained 12.1 % of the variance, with the explained variance 
decreasing across subsequent components, until PC25, which explained 
0 %. A parallel analysis (PA) was performed to determine how many 
principal components should be retained (Fig. 2b). Based on the PA, it 
was established that four principal components should be retained. 
These four components - PC1 (12.1 %), PC2 (10.3 %), PC3 (8.4 %), and 
PC4 (8 %) - together explained 38.8 % of the total variance. The most 
effective visual separation between the asbestos-exposed and unexposed 
groups was observed in the scatter plots for PC1-PC2 and PC1-PC3 
(Fig. 2c). Given the limited separation observed with PCA, we applied 
UMAP as an alternative dimensionality reduction technique. The 
resulting UMAP plot (Fig. 3) showed a mild distributional tendency 
between asbestos-exposed and unexposed samples, with some degree of 
partial grouping. Although the distinction was not sharp and sample 
overlap was substantial, the observed pattern may suggest the presence 
of subtle transcriptomic differences associated with asbestos exposure.

As outlined in the methods, the interpretation of DGE analysis relied 
on key parameters such as log2 fold change (l2FC > 1 or l2FC < − 1), p- 
values, and FDR-adjusted p-values (<0.05) to assess the statistical sig-
nificance of differentially expressed genes. In accordance with these 
criteria, 25 genes were identified as up-regulated (Supplementary 
Table 4), and 80 genes were identified as down-regulated (Supple-
mentary Table 5) in asbestos-exposed patients. The DGE results were 
visualized using an MA plot (Fig. 4a), which compares fold change to 
normalized mean counts. Genes above the red line represent those up- 
regulated in the exposed group, while those below the line are down- 
regulated. A volcano plot (Fig. 4b) was also generated using the R/ 
Bioconductor package EnhancedVolcano. This plot allowed for easy 
identification of genes with large fold changes and statistically signifi-
cant p-values. Genes on the right side of the plot are up-regulated, while 
those on the left side are down-regulated in exposed patients. In sum-
mary, the analysis identified 25 genes (0.088 % of the total) that were 

Fig. 1. Post-hoc power analysis for RNA-Seq differential expression analysis 
comparing asbestos-exposed (n = 13) and unexposed (n = 12) MPM patients. 
The curve shows statistical power as a function of effect size (log₂ fold change), 
based on a coefficient of variation (CV) of 0.5 and a significance level of α =
0.05. The red dashed line indicates the commonly used 80 % power threshold. 
The plot illustrates that the analysis is sufficiently powered to detect genes with 
large expression differences (log₂FC ≥ 1.8), while the power decreases sub-
stantially for smaller effect sizes. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Parallel Analysis plot & PCA. (a) Scree plot showing the variance explained by each principal component. The Y-axis represents variance, and the X-axis 
shows the components, helping determine how many to retain. (b) Parallel Analysis plot, with eigenvalues on the Y-axis and the number of factors on the X-axis. The 
blue line represents the real data's components, intersecting the curve from the simulated dataset. (c) PCA scatter plots illustrating all pairwise combinations between 
PC1, PC2, PC3, and PC4. Each dot represents a patient, with aquamarine indicating unexposed patients and pink representing asbestos-exposed patients. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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up-regulated and 80 genes (0.28 % of the total) that were down- 
regulated in asbestos-exposed patients.

The functional enrichment analysis, using the GO annotation data-
base, was performed with three different tools, each presenting the 

results in distinct formats. The clusterProfiler results were visualized in 
the dot plots (Fig. 5a and Fig. 5b). For the up-regulated DEGs, the top 10 
enriched GO terms were primarily related to biological processes (BP), 
including responses to inorganic substances (GO:0010035), cellular re-
sponses to metal ions (GO:0071248), cellular responses to inorganic 
substances (GO:0071241), and cellular responses to copper ions 
(GO:0071280). Other significant processes involved copper detoxifica-
tion (GO:0010273), regulation of hydrogen peroxide metabolism 
(GO:0010310), and stress responses to metal ions (GO:0097501).

For down-regulated DEGs, the top 10 enriched GO terms included 
five cellular components (CC), such as the external side of the plasma 
membrane (GO:0009897), collagen-containing extracellular matrix 
(GO:0062023), and the endoplasmic reticulum lumen (GO:0005788). 
Additionally, the analysis highlighted BP relevant to vascular function, 
including vascular regulation (GO:0003018), angiogenesis regulation 
(GO:0045765), and vascular permeability control (GO:0043114), as 
well as glomerulus development (GO:0032835). Heatmaps were 
generated using clusterProfiler to display the relationships between 
DEGs and their associated GO terms. Fig. 6a illustrates these correlations 
for the up-regulated genes, while Fig. 6b focuses on the down-regulated 
genes in patients with asbestos exposure.

The GO functional enrichment analysis was also visualized using 
gProfiler. This tool provided detailed tables displaying the enriched GO 
terms, their FDR-adjusted p-values, and the genes associated with each 
process. The terms shown in the figure represent the key driver terms, 
identified through a novel filtering algorithm within gProfiler, which 
refined the list of results. All terms listed in the tables were statistically 
significant, with FDR-adjusted p-values below 0.05. The complete re-
sults for up-regulated DEGs can be accessed at this link: https://biit.cs.ut 
.ee/gplink/l/m44bc5q8TL, and for down-regulated DEGs at: https://biit 

Fig. 3. Uniform Manifold Approximation and Projection Plot. UMAP projection 
of variance-stabilized gene expression data from asbestos-exposed (purple) and 
unexposed (orange) MPM samples. Each point represents an individual sample, 
labeled with its group and identifier. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 4. (a) MA plot. The scatter plot shows mean normalized counts (x-axis) versus log2 fold changes (y-axis) for each gene. Dots above the red line represent up- 
regulated genes, while those below indicate down-regulated genes in asbestos-exposed patients. Red dots highlight statistically significant differentially expressed 
genes, with red triangles marking genes with log2 fold changes beyond ±4, outside the plot's scale. (b) Volcano plot. This scatter plot displays p-value (y-axis) against 
log2 fold change (x-axis) for each gene. The horizontal line marks the significance threshold (p-value <0.05), with genes above it considered significant. Vertical lines 
show log2 fold change cutoffs (l2FC > 1 or l2FC < − 1). Blue dots represent significantly upregulated genes in asbestos-exposed patients, while red dots indicate down 
regulated genes. This pattern reverses for the unexposed group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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.cs.ut.ee/gplink/l/KOPP6wOuRv.
The outcomes of the GO functional enrichment analysis performed 

with DAVID db were summarized in Supplementary Table 6 and 7. 
Supplementary Table 6 highlights the enriched GO terms for up- 
regulated DEGs, while Supplementary Table 7 covers those for down- 
regulated DEGs. Only the significantly enriched GO terms are included 
in the presentation. In terms of the up-regulated genes in patients 
exposed to asbestos, the BP showing significant enrichment was the 
cellular response to copper ions (GO:0071280), with genes MT1G, 
SNCA, and MT1DP, and an FDR-adjusted p-value of 0.00895774. For 
down-regulated genes, the significantly enriched GO terms included 
collagen-containing extracellular matrix (GO:0062023) with ACAN, 
SEMA7A, FCN3, COL4A1, EMILIN3, VWA1, IGFBP7, and THBS1, as well 
as the external side of the plasma membrane (GO:0009897), involving 
CDH5, SEMA7A, FCN3, ENPEP, CLEC4M, THBS1, PRND, and GPIHBP1. 
Both terms showed statistical significance with an FDR-adjusted p-value 
of 0.0173. These findings, along with an extensive literature review, 
helped identify several key genes of interest among the DEGs, which are 
summarized in Supplementary Table 8.

In order to provide a comprehensive overview of the statistically 
significant enriched GO terms in the up- and down-regulated genetic 
profile of asbestos-exposed patients, a Venn diagram (Fig. 7) was con-
structed. It shows the overlap of results obtained using three enrichment 
tools: DAVID, ClusterProfiler, and gProfiler. For the up-regulated genes, 
the only GO term consistently identified by all three tools was the BP 
“cellular response to copper ion” (GO:0071280), a stress-related 
response that may reflect altered metal homeostasis in asbestos- 
exposed tissues. Additional GO terms shared between ClusterProfiler 
and gProfiler included processes related to oxidative stress regulation 
(negative regulation of oxidoreductase activity - GO:0051354, detoxi-
fication - GO:0098754), ion balance and transport (intracellular 
monatomic cation homeostasis - GO:0030003, inorganic ion homeo-
stasis - GO:0098771, organic cation transport - GO:0015695), and pro-
tein complex formation (protein tetramerization - GO:0051262). These 
terms collectively suggest an up-regulation of defense mechanisms in 
response to metal-induced oxidative stress. In the down-regulated pro-
file, the most consistently enriched terms across all tools were the 
cellular component (CC) “external side of the plasma membrane” 

Fig. 5. Functional enrichment analysis with ClusterProfiler. The x-axis shows the GeneRatio, representing the proportion of DEGs linked to each GO term, while the 
y-axis lists the top 10 enriched GO terms. Each dot reflects a GO term, with its size indicating the number of DEGs (Count) and its colour representing the adjusted p- 
value (p.adjust). Panel (a) shows the results for up-regulated genes, and panel (b) displays results for down-regulated genes in asbestos-exposed patients.

Fig. 6. Enriched GO terms with associated DEGs using ClusterProfiler for (a) up-regulated and (b) down-regulated DEGs in asbestos-exposed patients. Black bars 
indicate the presence of differentially expressed genes within the enriched Gene Ontology (GO) terms.
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(GO:0009897) and “collagen-containing extracellular matrix” 
(GO:0062023), highlighting a potential disruption of extracellular ma-
trix organization and cell–cell interactions. ClusterProfiler and gProfiler 
also shared additional enriched terms, including extracellular matrix 
structural constituent (GO:0005201) [MF], endoplasmic reticulum 
lumen (GO:0005788) [CC], bicellular tight junction (GO:0005923) 
[CC], and the biological process regulation of vascular permeability 
(GO:0043114). These findings suggest a possible impairment in tissue 
architecture, cell adhesion, and vascular integrity in asbestos-exposed 
patients.

4. Discussion

The findings of this study have identified several genes that are 
differentially expressed in MPM patients with documented asbestos 
exposure, leading to the characterization of a distinct gene expression 
profile. While the PCA results did not show well-defined clusters be-
tween asbestos-exposed and unexposed groups — an expected outcome 
given that all samples were from MPM patients — we applied UMAP to 
the variance-stabilized expression data to further explore potential 
stratification. Although UMAP did not reveal fully distinct clusters, it 
showed a mild tendency toward divergence between the groups, with 
substantial overlap among samples. This subtle pattern is consistent 
with the statistical results from Welch's t-test and ANOVA, which sup-
port the presence of modest yet detectable differences between the two 
groups. Moreover, the post hoc power analysis indicated that the cohort 
was sufficiently powered to detect genes with substantial expression 
changes, further supporting the reliability of the identified DEGs.

Functional enrichment analysis using multiple tools revealed 
distinctive GO terms associated with both the up-regulated and down- 
regulated genes. The overlap of GO terms, illustrated in the Venn dia-
gram, suggests shared biological mechanisms, including stress response 
activation and extracellular matrix alterations. These insights support 
the interpretation of the identified DEGs. Although experimental vali-
dation was not feasible, a comprehensive literature review supported 
the findings and highlighted several key DEGs. For the up-regulated 
genes, Metallothionein 1D Pseudogene (MT1DP) and Metallothionein 
1G (MT1G) were of particular interest. These genes are likely involved in 
cellular defense mechanisms against asbestos-induced carcinogenesis, 
given their roles in metal ion homeostasis, detoxification, and free 
radical scavenging (Werynska et al., 2015). Increased metallothionein 
expression in individuals with prolonged asbestos exposure has been 
reported (Isik et al., 2001), and the upregulation of MT1G is also linked 

to the inhibition of ferroptosis, a process associated with asbestos- 
induced cancer (Zhang et al., 2022). Metallothionein overexpression is 
also a recognized marker for tumor progression and drug resistance in a 
wide range of cancers (Si and Lang, 2018). The haptoglobin gene (HP), 
which resulted also up-regulated, is known for its antioxidant properties. 
It is mainly expressed in the liver and lungs, and is being studied as a 
potential biomarker for many diseases, including various forms of ma-
lignant neoplasms (Tseng et al., 2004) (Naryzny et al., 2021). HP has 
previously been reported as differentially expressed in patients with 
epithelioid MPM (López-Ríos et al., 2006), and its upregulation in 
asbestos-exposed adipocytes suggests its involvement in asbestos- 
induced carcinogenesis (Chew et al., 2014). Another significant up- 
regulated gene in our analysis was the matrix metallopeptidase 1 
(MMP1) gene encoding a member of the peptidase M10 family of matrix 
metalloproteinases. Its role in MPM has already been investigated and 
well-documented (Ying et al., 2020), confirming the validity of our re-
sults. MMP1 expression is known to be influenced by asbestos exposure 
in both mesothelial and lung epithelial cells (Kroczynska et al., 2006; 
Perkins et al., 2015a), and these findings are further supported by in 
vivo studies (Morimoto et al., 1997). It is therefore reasonable to hy-
pothesize that the upregulation of MMP1 observed in our study is 
directly linked to asbestos exposure.

Our analysis also identified candidates up-regulated in asbestos- 
exposed patients for which no direct association with asbestos expo-
sure has been reported to date. Synuclein Alpha (SNCA) is implicated in 
cancer and neurodegenerative diseases, and its overexpression has been 
documented in several malignancies and linked to ferroptosis (Ahmad 
et al., 2007; Li et al., 2018) (Angelova et al., 2020). However, no direct 
relationship with asbestos exposure has been established, and its 
possible involvement in asbestos-related MPM remains an exploratory 
hypothesis. Similarly, Ryanodine Receptor 1 (RYR1), encoding a cal-
cium channel primarily expressed in skeletal muscle (Witherspoon and 
Meilleur, 2016), was identified among the up-regulated genes. RYR1 is 
involved in calcium homeostasis, oxidative stress, and endoplasmic re-
ticulum stress—processes described in the literature as relevant to the 
biological effects of asbestos (Witherspoon and Meilleur, 2016) (Ryan 
et al., 2014). Its association with GO terms related to these pathways 
suggests a potential, although unconfirmed, role in asbestos-related 
mechanisms.

In the down-regulated gene expression profile, additional genes were 
identified that may hold considerable biological relevance. Collagen 
Type IV Alpha 1 Chain (COL4A1), a basement membrane component 
involved in tumor metastasis, is of interest due to its known association 

Fig. 7. Venn diagram showing the enriched Gene Ontology (GO) terms identified by ClusterProfiler, g:Profiler, and DAVID. (a) Up-regulated DEGs in asbestos- 
exposed patients. (b) Down-regulated DEGs in asbestos-exposed patients.
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with asbestos (Nymark et al., 2007). Similarly, Insulin-Like Growth 
Factor Binding Protein 7 (IGFBP7) was down-regulated in our study, and 
previous studies have shown its role in asbestos-exposed cells and po-
tential as a biomarker for lung cancer (Munson et al., 2018; Zhao et al., 
2013). Our findings about the down-regulation of the Natriuretic Pep-
tide B gene (NPPB) also aligns with those of a previous in vitro study on 
the DNA methylation profiling of an asbestos-treated MeT5A cell line, 
suggesting a possible role for NPPB in asbestos-related gene regulation 
(Casalone et al., 2018). Additionally, NPPB has been proposed as a 
marker for NF2-Hippo pathway alterations and/or predict patient 
prognosis in mesothelioma patients (Sato et al., 2023). Furthermore, the 
BARX homeobox 1 gene (BARX1) and the Forkhead box L1 gene 
(FOXL1), two down-regulated genes in this study, were previously 
identified as differentially methylated in cells exposed to asbestos (Sato 
et al., 2023), suggesting their involvement in asbestos-related disease 
mechanisms. Other down-regulated genes, such as Actin Gamma 2 
(ACTG2), Solute Carrier Family 15 Member 2 (SLC15A2), and Calponin 
1 (CNN1) genes, have also been linked to asbestos exposure in previous 
in vitro studies (Munson et al., 2018; Hillegass et al., 2010) (Perkins 
et al., 2015b). Interestingly, the down-regulation of Olfactory Receptor 
Family 7 Subfamily D Member 2 (OR7D2) contrasts with earlier studies, 
which reported its up-regulation following asbestos exposure (Nymark 
et al., 2007). This discordance may arise because Nymark et al. (2007) 
(Nymark et al., 2007) identified an early response to asbestos exposure 
(48 h), with ROS release. In contrast, our findings reflect more advanced 
disease stages, where defense mechanisms against oxidative stress 
become dominant, and the down-regulation of OR7D2 may indicate an 
adaptive response to prolonged damage. Similarly, the down-regulation 
of Thrombospondin 1 (THBS1), despite its reported overexpression in 
MPM tumors (Ohta et al., 1999), suggests a complex role for this gene in 
asbestos-induced carcinogenesis that warrants further investigation. 
Finally, Claudin 5 (CLDN5) was found to be down-regulated, though 
previous analyses did not find this gene affected by asbestos (Rouka 
et al., 2017). Hephaestin (HEPH), another down-regulated gene, has 
been suggested as a potential biomarker for lung cancer (Zacchi et al., 
2021) and has been associated with protection against MPM in asbestos- 
exposed populations (Crovella et al., 2016). Further studies are needed 
to explore its role in asbestos-induced carcinogenesis. For the remaining 
DEGs, no available evidence of direct associations with asbestos expo-
sure have currently been reported in the literature, suggesting that 
additional research is needed to fully understand their potential roles in 
MPM.

The functional enrichment analysis of the 25 up-regulated genes 
highlighted several key biological processes, such as inorganic ion ho-
meostasis, regulation of hydrogen peroxide catabolic processes, and 
detoxification pathways. These findings suggest that asbestos exposure 
disrupts essential cellular functions, particularly ion regulation and 
oxidative stress response. Conversely, the analysis of the 80 down- 
regulated genes revealed significant enrichment in cellular compo-
nents, specifically the external side of the plasma membrane and the 
collagen-containing extracellular matrix. This supports the hypothesis 
that inhaling asbestos fibers could compromise cellular integrity and 
disrupt cell-matrix interactions.

5. Conclusions and future perspectives

This study identifies a distinct gene expression profile linked to 
asbestos exposure. The enriched GO terms derived from the functional 
enrichment analysis offer a foundation for future investigations. In 
particular, among the up-regulated DEGs, metallothioneins (MT1DP and 
MT1G), SNCA, HP, MMP1, and RYR1 stand out. MT1G and MMP1 are 
well-documented in asbestos-induced carcinogenesis and could act as 
diagnostic biomarkers for asbestos exposure. In contrast, SNCA and 
RYR1 have not been previously linked to asbestos exposure. Given their 
roles in ferroptosis, calcium homeostasis, and oxidative stress, their 
upregulation requires further investigation. Similarly, the down- 

regulated DEGs, including COL4A1, IGFBP7, NPPB, BARX1, FOXL1, 
ACTG2, OR7D2, SLC15A2, CNN1, THBS1, CLDN5, and HEPH, offer both 
established and emerging insights. While genes like IGFBP7 and COL4A1 
have established roles in asbestos-related processes, others, such as 
HEPH, show potential as a biomarker for asbestos-related carcinogen-
esis, despite limited direct evidence.

Limitations of this study must be acknowledged. One of the primary 
constraints is the limited sample size, a common challenge in MPM 
research due to the rarity of the disease. In this study, the cohort size was 
further adjusted to reduce statistical bias caused by variability within 
one of the subgroups. Expanding the use of public omics databases and 
promoting data sharing within the scientific community could help 
address this first limitation. A larger, more diverse cohort would enable 
more detailed analyses, accounting for variables such as tumor stage, 
gender, and age. Although the power analysis confirmed that our study 
could detect genes with large expression changes, smaller differences 
may have gone undetected. As a result, moderately deregulated gen-
es—possibly relevant to asbestos-induced carcinogenesis—might be 
underrepresented. A further limitation is the retrospective classification 
of asbestos exposure based on TCGA-MESO annotations. Although the 
TCGA study (Hmeljak et al., 2018) reported asbestos exposure history, it 
also recommended caution when interpreting exposure-related findings, 
due to potential limitations in the dataset. To reduce the risk of 
misclassification, only samples with documented exposure status were 
included. Nonetheless, a certain degree of uncertainty cannot be 
excluded and may have contributed to the differences in gene expression 
between exposed and unexposed groups. Prospective studies with 
standardized exposure data are needed to validate and extend these 
findings. Finally, this study lacks experimental validation of the tran-
scriptomic results. In the future, we plan to collaborate with groups 
conducting lung content analyses and animal studies, with the aim of 
increasing sample size and variability, and validating our findings. 
Validation efforts will focus on the genes MT1G, MMP1, HP, and 
COL4A1, selected for their involvement in oxidative stress, matrix 
remodeling, metal ion homeostasis, and extracellular matrix integ-
rity—biological processes relevant to asbestos-related carcinogenesis. 
Protein-level validation will be performed using Western blotting and 
immunohistochemistry.

This study serves as a preliminary step toward future research aimed 
at identifying biomarkers for MPM. Future directions will include both 
in vitro and in vivo studies, focusing on the functional characterization 
of the highlighted genes. The ultimate goal is to identify novel diagnostic 
and prognostic biomarkers, along with candidate molecular targets to be 
evaluated in future studies, with potential implications in the clinical 
management of MPM.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.yexmp.2025.104973.
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